A sufficient statistic is a deterministic function that captures an essential property of a probabilistic function (channel, kernel). Being a sufficient statistic can be expressed nicely in terms of string diagrams, as Tobias Fritz showed recently, in adjoint form. This reformulation highlights the role of split idempotents, in the Fisher-Neyman factorisation theorem. Examples of a sufficient statistic occur in the literature, but mostly in continuous probability. This paper demonstrates that there are also several fundamental examples of a sufficient statistic in discrete probability. They emerge after some combinatorial groundwork that reveals the relevant dagger split idempotents and shows that a sufficient statistic is a deterministic dagger epi.
翻译:足够统计是一种决定性的功能,可以捕捉概率函数(通道、内核)的基本属性。正如Tobias Fritz最近以联合形式展示的那样,足够统计数据可以用字符串图来很好地表达。这一重新表述突出了在Fisher-Neyman因子化理论中分裂的精英的作用。文献中出现了足够统计数据的例子,但大多是持续概率。本文表明,还存在几个关于离散概率的充分统计数据的基本例子。它们出现在一些组合基础之后,这些基础揭示了相关的匕首分裂的精英,并表明足够的统计数据是一种决定性的匕首缩。