WiFi sensing technology has shown superiority in smart homes among various sensors for its cost-effective and privacy-preserving merits. It is empowered by Channel State Information (CSI) extracted from WiFi signals and advanced machine learning models to analyze motion patterns in CSI. Many learning-based models have been proposed for kinds of applications, but they severely suffer from environmental dependency. Though domain adaptation methods have been proposed to tackle this issue, it is not practical to collect high-quality, well-segmented and balanced CSI samples in a new environment for adaptation algorithms, but randomly-captured CSI samples can be easily collected. {\color{black}In this paper, we firstly explore how to learn a robust model from these low-quality CSI samples, and propose AutoFi, an annotation-efficient WiFi sensing model based on a novel geometric self-supervised learning algorithm.} The AutoFi fully utilizes unlabeled low-quality CSI samples that are captured randomly, and then transfers the knowledge to specific tasks defined by users, which is the first work to achieve cross-task transfer in WiFi sensing. The AutoFi is implemented on a pair of Atheros WiFi APs for evaluation. The AutoFi transfers knowledge from randomly collected CSI samples into human gait recognition and achieves state-of-the-art performance. Furthermore, we simulate cross-task transfer using public datasets to further demonstrate its capacity for cross-task learning. For the UT-HAR and Widar datasets, the AutoFi achieves satisfactory results on activity recognition and gesture recognition without any prior training. We believe that the AutoFi takes a huge step toward automatic WiFi sensing without any developer engagement.


翻译:WiFi 遥感技术在智能家庭的各种传感器中表现出了智能家庭的优越性,因为其具有成本效益和隐私保护的优点。它得到了从WiFi信号和高级机器学习模型中提取的频道国家信息(CSI)授权分析CSI的运动模式。许多基于学习的模型被提议用于各种应用,但它们严重受环境依赖。虽然提出了一些领域适应方法来解决这一问题,但在一种适应算法的新环境中收集高质量、有条理和平衡的 CSI样本是不切实际的,但随机自动获取的 CSI样本可以很容易地收集。在本文中,我们首先探索如何从这些低质量的 CSI样本中学习一个强大的模型,并推荐一个基于新型的几何自监自监自学学习算算算算算算法学习算法的注释高效WeFifi 测试模型。我们完全利用随机采集的不贴标签的低质量的 CSI样本,然后将知识传递给用户,这是在WFiFS遥感中实现交叉传输的第一个工作。AFiFial活动在不需进行学习的进度前数据传输能力认证。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月12日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员