In this paper, we combine the nonlinear HWENO reconstruction in \cite{newhwenozq} and the fixed-point iteration with Gauss-Seidel fast sweeping strategy, to solve the static Hamilton-Jacobi equations in a novel HWENO framework recently developed in \cite{mehweno1}. The proposed HWENO frameworks enjoys several advantages. First, compared with the traditional HWENO framework, the proposed methods do not need to introduce additional auxiliary equations to update the derivatives of the unknown function $\phi$. They are now computed from the current value of $\phi$ and the previous spatial derivatives of $\phi$. This approach saves the computational storage and CPU time, which greatly improves the computational efficiency of the traditional HWENO scheme. In addition, compared with the traditional WENO method, reconstruction stencil of the HWENO methods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller on the same mesh. Second, the fixed-point fast sweeping method is used to update the numerical approximation. It is an explicit method and does not involve the inverse operation of nonlinear Hamiltonian, therefore any Hamilton-Jacobi equations with complex Hamiltonian can be solved easily. It also resolves some known issues, including that the iterative number is very sensitive to the parameter $\varepsilon$ used in the nonlinear weights, as observed in previous studies. Finally, in order to further reduce the computational cost, a hybrid strategy is also presented. Extensive numerical experiments are performed on two-dimensional problems, which demonstrate the good performance of the proposed fixed-point fast sweeping HWENO methods.
翻译:在本文中,我们将非线性HWINO重建在\cite{newhwenozq}和固定点迭代与Gaus-Seidel快速扫荡战略相结合,以在最近在\cite{mehweno1}}中开发的新HWINO框架中解决静态的汉密尔顿-Jacobi方程式。拟议的HWINO框架具有若干优势。首先,与传统的HWENO框架相比,拟议方法不需要引入额外的辅助方程式来更新未知的混合函数的衍生物$\phi$。现在,这些方程式是根据美元当前值的美元比重和先前的美元空间衍生物计算的。这种方法节省了计算存储量和CPU时间,大大提高了传统HWENO制度的计算效率。此外,与传统的WENO方法相比,HWENO方法的重建速度变得更加紧凑,它们的边界处理方法比较简单,而数字则更小。第二,使用固定点的快速扫描方法来更新数字的基数接近值。因此,在IMillorloral-rloral的轨道上采用一种明确的计算方法, 也可以度的计算方法可以更精确的计算。在正确的计算中可以进一步显示一种固定的计算方法, 。在正确的计算方法,在正确的计算方法,在正确的计算中可以显示一种不固定的数值,在正确的计算方法,在正确的计算。在正确的计算方法,在正确的计算方法,在正确的计算方法,在正确的计算方法中可以进一步显示某种方法,在正确的计算方法,在正确的计算方法,在正确的计算方法,在正确的计算方法,在正确的方法是,在正确的方法中可以显示一种方法,在正确的方法中可以显示的是,在正确的方法,在正确的方法,在正确的方法,在正确的方法,在正确的方法是,在正确的方法,在正确的方法中,在正确的方法中,在正确的方法中可以显示一种方法中可以显示一种方法中,在正确的数值上,在正确的方法中可以显示一种方法,在正确的数值上,在正确的,在正确的,在正确的,在正确的,在正确的,在正确的,在正确的,在正确的方法是,在正确的,在正确的,在正确的,在正确的,在正确的,在正确的,在正确的,在正确的,在正确的,在正确的计算中可以显示一种方法中,在正确的