Quantifying uncertainty in model predictions is a common goal for practitioners seeking more than just point predictions. One tool for uncertainty quantification that requires minimal assumptions is conformal inference, which can help create probabilistically valid prediction regions for black box models. Classical conformal prediction only provides marginal validity, whereas in many situations locally valid prediction regions are desirable. Deciding how best to partition the feature space X when applying localized conformal prediction is still an open question. We present MD-split+, a practical local conformal approach that creates X partitions based on localized model performance of conditional density estimation models. Our method handles complex real-world data settings where such models may be misspecified, and scales to high-dimensional inputs. We discuss how our local partitions philosophically align with expected behavior from an unattainable conditional conformal inference approach. We also empirically compare our method against other local conformal approaches.
翻译:模型预测中的不确定性量化是从业人员寻求不止点预测的共同目标。 需要最低假设的不确定性量化的一个工具是一致的推断,有助于为黑盒模型创建概率有效的预测区域。 古典一致预测仅提供边际有效性,而在许多情况下,当地有效的预测区域是可取的。 确定在应用本地一致预测时如何最好地分割特征空间X仍是一个尚未解决的问题。 我们介绍了一种实用的本地兼容方法MD-split+,该方法根据有条件密度估计模型的局部模型性能创建X分区。 我们的方法处理复杂的真实世界数据设置,在这些模型可能被错误指定的地方,以及尺度到高维度投入。 我们讨论了我们本地的分区如何在哲学上与无法实现的有条件一致推断方法的预期行为相一致。 我们还将我们的方法与其他本地的兼容方法进行了实验性比较。