The network scale-up method (NSUM) is a survey-based method for estimating the number of individuals in a hidden or hard-to-reach subgroup of a general population. In NSUM surveys, sampled individuals report how many others they know in the subpopulation of interest (e.g. "How many sex workers do you know?") and how many others they know in subpopulations of the general population (e.g. "How many bus drivers do you know?"). NSUM is widely used to estimate the size of important epidemiological risk groups, including men who have sex with men, sex workers, HIV+ individuals, and drug users. Unlike several other methods for population size estimation, NSUM requires only a single random sample and the estimator has a conveniently simple form. Despite its popularity, there are no published guidelines for the minimum sample size calculation to achieve a desired statistical precision. Here, we provide a sample size formula that can be employed in any NSUM survey. We show analytically and by simulation that the sample size controls error at the nominal rate and is robust to some forms of network model mis-specification. We apply this methodology to study the minimum sample size and relative error properties of several published NSUM surveys.


翻译:网络扩大方法(NSUM)是一种基于调查的方法,用于估计在一般人口隐蔽或难以接触的分组中的人数。在NSUM的调查中,抽样个人报告在感兴趣的亚群中(例如,“有多少性工作者?” )了解多少其他人,在一般人口分组中了解多少其他人(例如,“你认识多少公共汽车司机?” )。国家统计UM被广泛用来估计重要的流行病风险群体的规模,包括男男性行为者、性工作者、艾滋病毒+个人和吸毒者。与若干其他的人口规模估计方法不同,国家统计UM仅需要一次随机抽样,估计者有简单易懂的形式。尽管受到欢迎,但没有公布最低抽样规模计算准则,以达到理想的统计精确度。这里我们提供了一种抽样规模公式,可以在任何NSUM的调查中使用。我们通过分析和模拟来显示抽样规模控制误差,其标称率对若干网络模式来说是稳健的。我们采用这一方法来研究最低抽样规模和相对误差。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员