The network scale-up method (NSUM) is a survey-based method for estimating the number of individuals in a hidden or hard-to-reach subgroup of a general population. In NSUM surveys, sampled individuals report how many others they know in the subpopulation of interest (e.g. "How many sex workers do you know?") and how many others they know in subpopulations of the general population (e.g. "How many bus drivers do you know?"). NSUM is widely used to estimate the size of important epidemiological risk groups, including men who have sex with men, sex workers, HIV+ individuals, and drug users. Unlike several other methods for population size estimation, NSUM requires only a single random sample and the estimator has a conveniently simple form. Despite its popularity, there are no published guidelines for the minimum sample size calculation to achieve a desired statistical precision. Here, we provide a sample size formula that can be employed in any NSUM survey. We show analytically and by simulation that the sample size controls error at the nominal rate and is robust to some forms of network model mis-specification. We apply this methodology to study the minimum sample size and relative error properties of several published NSUM surveys.
翻译:网络扩大方法(NSUM)是一种基于调查的方法,用于估计在一般人口隐蔽或难以接触的分组中的人数。在NSUM的调查中,抽样个人报告在感兴趣的亚群中(例如,“有多少性工作者?” )了解多少其他人,在一般人口分组中了解多少其他人(例如,“你认识多少公共汽车司机?” )。国家统计UM被广泛用来估计重要的流行病风险群体的规模,包括男男性行为者、性工作者、艾滋病毒+个人和吸毒者。与若干其他的人口规模估计方法不同,国家统计UM仅需要一次随机抽样,估计者有简单易懂的形式。尽管受到欢迎,但没有公布最低抽样规模计算准则,以达到理想的统计精确度。这里我们提供了一种抽样规模公式,可以在任何NSUM的调查中使用。我们通过分析和模拟来显示抽样规模控制误差,其标称率对若干网络模式来说是稳健的。我们采用这一方法来研究最低抽样规模和相对误差。