Software's effect upon the world hinges upon the hardware that interprets it. This tends not to be an issue, because we standardise hardware. AI is typically conceived of as a software ``mind'' running on such interchangeable hardware. This formalises mind-body dualism, in that a software ``mind'' can be run on any number of standardised bodies. While this works well for simple applications, we argue that this approach is less than ideal for the purposes of formalising artificial general intelligence (AGI) or artificial super-intelligence (ASI). The general reinforcement learning agent AIXI is pareto optimal. However, this claim regarding AIXI's performance is highly subjective, because that performance depends upon the choice of interpreter. We examine this problem and formulate an approach based upon enactive cognition and pancomputationalism to address the issue. Weakness is a measure of simplicity, a ``proxy for intelligence'' unrelated to compression. If hypotheses are evaluated in terms of weakness, rather than length, we are able to make objective claims regarding performance. Subsequently, we propose objectively optimal notions of AGI and ASI such that the former is computable and the latter anytime computable (though impractical).
翻译:软件对世界的影响取决于对它进行解释的硬件。 这往往不是一个问题, 因为我们将硬件标准化。 AI 通常被视为一种软件“ mind' ” 运行在这种可互换的硬件上。 这种形式化了思想- 体的二元性, 因为它可以在任何数量的标准化机构运行“mind' ” 软件。 虽然对于简单的应用程序来说,这个方法效果很好, 但是对于将人造一般智能(AGI)或人工超级智能(ASI)正规化而言, 这个方法并不那么理想。 通用强化学习代理 AIXI 是相当理想的。 但是, 关于AIXI的性能的主张是高度主观的, 因为其性能取决于翻译的选择。 我们研究这个问题, 并基于任何标准化的认知和分解论来制定一种方法来解决这个问题。 弱化是一种简单度的衡量标准, 即情报的“ proxoroxy”, 与压缩无关。 如果从弱点的角度评价假说, 而不是长度, 我们就可以客观地提出有关性表现的主张。 随后, 我们提出一个客观上最佳的AGI 和后一个不现实的观点。