Software's effect upon the world hinges upon the hardware that interprets it. This tends not to be an issue, because we standardise hardware. AI is typically conceived of as a software ``mind'' running on such interchangeable hardware. This formalises mind-body dualism, in that a software ``mind'' can be run on any number of standardised bodies. While this works well for simple applications, we argue that this approach is less than ideal for the purposes of formalising artificial general intelligence (AGI) or artificial super-intelligence (ASI). The general reinforcement learning agent AIXI is pareto optimal. However, this claim regarding AIXI's performance is highly subjective, because that performance depends upon the choice of interpreter. We examine this problem and formulate an approach based upon enactive cognition and pancomputationalism to address the issue. Weakness is a measure of simplicity, a ``proxy for intelligence'' unrelated to compression. If hypotheses are evaluated in terms of weakness, rather than length, we are able to make objective claims regarding performance. Subsequently, we propose objectively optimal notions of AGI and ASI such that the former is computable and the latter anytime computable (though impractical).


翻译:软件对世界的影响取决于对它进行解释的硬件。 这往往不是一个问题, 因为我们将硬件标准化。 AI 通常被视为一种软件“ mind' ” 运行在这种可互换的硬件上。 这种形式化了思想- 体的二元性, 因为它可以在任何数量的标准化机构运行“mind' ” 软件。 虽然对于简单的应用程序来说,这个方法效果很好, 但是对于将人造一般智能(AGI)或人工超级智能(ASI)正规化而言, 这个方法并不那么理想。 通用强化学习代理 AIXI 是相当理想的。 但是, 关于AIXI的性能的主张是高度主观的, 因为其性能取决于翻译的选择。 我们研究这个问题, 并基于任何标准化的认知和分解论来制定一种方法来解决这个问题。 弱化是一种简单度的衡量标准, 即情报的“ proxoroxy”, 与压缩无关。 如果从弱点的角度评价假说, 而不是长度, 我们就可以客观地提出有关性表现的主张。 随后, 我们提出一个客观上最佳的AGI 和后一个不现实的观点。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员