Flying and ground-based cars require various services such as autonomous driving, remote pilot, infotainment, and remote diagnosis. Each service requires specific Quality of Service (QoS) and network features. Therefore, network slicing can be a solution to fulfill the requirements of various services. Some services, such as infotainment, may have similar requirements to serve flying and ground-based cars. Therefore, some slices can serve both kinds of cars. However, when network slice resource sharing is too aggressive, slices can not meet QoS requirements, where resource under-provisioning causes the violation of QoS, and resource over-provisioning causes resource under-utilization. We propose two closed loops for managing RAN slice resources for cars to address these challenges. First, we present an auction mechanism for allocating Resource Block (RB) to the tenants who provide services to the cars using slices. Second, we design one closed loop that maps slices and services of tenants to virtual Open Distributed Units (vO-DUs) and assigns RB to vO-DUs for management purposes. Third, we design another closed loop for intra-slices RB scheduling to serve cars. Fourth, we present a reward function that interconnects these two closed loops to satisfy the time-varying demands of cars at each slice while meeting QoS requirements in terms of delay. Finally, we design distributed deep reinforcement learning approach to maximize the formulated reward function. The simulation results show that our approach satisfies more than 90% vO-DUs resource constraints and network slice requirements.


翻译:飞行汽车和地面汽车需要各种服务,如自主驾驶、远程试点、通风和远程诊断等。每种服务都需要具体的服务质量和网络功能。因此,网络切片可以是满足各种服务要求的一种解决方案。有些服务,如信息保存,可能有类似的服务要求,为飞行和地面汽车服务。因此,有些切片可以服务两种类型的汽车。然而,当网络切片资源共享过于积极性时,切片无法满足QOS的要求,而资源供应不足导致违反QOS的要求,而资源供应过多导致资源利用不足导致资源利用不足。因此,我们建议用两个闭路环来管理RAN切片汽车资源,以应对这些挑战。首先,我们提出一个拍卖机制,将资源封隔路(RB)分配给使用切片向汽车提供服务的租户。第二,我们设计一个闭路环,将租户的切片和服务映射到虚拟公开分解方法(VO-DUs),将RB的制约到VO-DUs,用于管理目的管理目的。第三,我们设计另一个闭路路路路路,我们为内部分路路。我们每段的连路运行。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员