The increasing complexity of software has led to a drastic rise in time and costs for identifying and fixing bugs. Various approaches are explored in the literature to generate fixes for buggy code automatically. However, few tools and datasets are available to evaluate model-generated fixes effectively due to the large combinatorial space of possible fixes for a particular bug. In this work, we introduce FIXEVAL, a benchmark comprising buggy code submissions to competitive programming problems and their respective fixes. FIXEVAL is composed of a rich test suite to evaluate and assess the correctness of model-generated program fixes and further information regarding time and memory constraints and acceptance based on a verdict. We consider two Transformer language models pretrained on programming languages as our baselines and compare them using match-based and execution-based evaluation metrics. Our experiments show that match-based metrics do not reflect model-generated program fixes accurately. At the same time, execution-based methods evaluate programs through all cases and scenarios designed explicitly for that solution. Therefore, we believe FIXEVAL provides a step towards real-world automatic bug fixing and model-generated code evaluation. The dataset and models are open-sourced.\footnote{\url{https://github.com/mahimanzum/FixEval}}


翻译:软件日益复杂,导致识别和修正错误的时间和费用急剧上升。文献中探讨了各种办法,以自动修正错误代码。然而,由于对特定错误可能进行修正的庞大组合空间,很少有工具和数据集可用于有效评价模型生成的固定方法。在这项工作中,我们引入了FIXEVAL,这是一个基准,包括针对竞争性编程问题和各自的修正提交错误代码。FIXEVAL由一套丰富的测试套件组成,用来评价和评估模型生成程序修正的正确性,以及基于判定结果的关于时间和内存限制和接受的进一步信息。我们认为,有两个变换语言模型预先以编程语言作为我们的基线,并使用匹配基础和基于执行的评估尺度进行比较。我们的实验表明,基于匹配的参数并不准确反映模型生成的程序修正方法。与此同时,基于执行的方法通过明确为该解决方案设计的所有案例和情景来评估程序。因此,我们认为FIXEVAL提供了迈向真实世界自动错误修正和模型生成代码的模型评估的一步。数据设置和模型是开放源码/ASGU/ANSO。 和模型是开放的。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员