DP-coloring was introduced by Dvo\v{r}\'{a}k and Postle as a generalization of list coloring. It was originally used to solve a longstanding conjecture by Borodin, stating that every planar graph without cycles of lengths 4 to 8 is 3-choosable. In this paper, we give three sufficient conditions for a planar graph to be DP-4-colorable. Actually all the results (Theorem 1.3, 1.4 and 1.7) are stated in the ``color extendability'' form, and uniformly proved by vertex identification and discharging method.
翻译:Dvo\v{r ⁇ {{{a}k 和 Postle 将 DP- 彩色介绍为列表彩色的概略化。 它最初用于解决Borodin 的长期猜想, 指出每个没有长度4-8周期的平面图都是三选的。 在本文中, 我们给出了三个充分的条件, 使平面图是 DP-4- 彩色的。 实际上, 所有结果( Theorem 1. 3、 1. 4 和 1. 7) 都用“ 彩色扩展性” 的形式来表示, 并且一致地通过顶点识别和排放方法来证明 。