We prove that the cop number of any $2K_2$-free graph is at most 2, proving a conjecture of Sivaraman and Testa. We also show that the upper bound of $3$ on the cop number of $2K_1+K_2$-free (co-diamond--free) graphs is best possible.
翻译:我们证明任何2K_2美元的无金图的警号最多只有2美元,这证明了Sivaraman和Testa的推测。 我们还表明,在2K_1+K_2美元的无金图的警号上方的3美元上限是最佳的。