Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms. Several important works have investigated whether neural networks can effectively reason like algorithms, typically by learning to execute them. The common trend in the area, however, is to generate targeted kinds of algorithmic data to evaluate specific hypotheses, making results hard to transfer across publications, and increasing the barrier of entry. To consolidate progress and work towards unified evaluation, we propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook. Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms. We perform extensive experiments to demonstrate how several popular algorithmic reasoning baselines perform on these tasks, and consequently, highlight links to several open challenges. Our library is readily available at https://github.com/deepmind/clrs.
翻译:算法的学习表现是机器学习的一个新兴领域,力求将神经网络的概念与古典算法联系起来。若干重要工作调查了神经网络能否有效地像算法那样理性,通常通过学习执行算法。然而,该领域的共同趋势是产生有针对性的算法数据,以评价具体假设,使成果难以跨出版物转移,并增加进入障碍。为了巩固进展和统一评价的工作,我们提议CLRS 算法解释基准,涵盖从引言到Algorithms教科书的古典算法。我们的基准涵盖各种算法推理程序,包括分类、搜索、动态编程、图表算法、弦算法和几何算法。我们进行了广泛的实验,以证明若干流行的算法推理基线如何在这些任务上发挥作用,并因此强调与若干公开挑战的联系。我们的图书馆可以在https://github.com/deepmind/clers查阅。