Knowledge graph embedding research has mainly focused on learning continuous representations of knowledge graphs towards the link prediction problem. Recently developed frameworks can be effectively applied in research related applications. Yet, these frameworks do not fulfill many requirements of real-world applications. As the size of the knowledge graph grows, moving computation from a commodity computer to a cluster of computers in these frameworks becomes more challenging. Finding suitable hyperparameter settings w.r.t. time and computational budgets are left to practitioners. In addition, the continual learning aspect in knowledge graph embedding frameworks is often ignored, although continual learning plays an important role in many real-world (deep) learning-driven applications. Arguably, these limitations explain the lack of publicly available knowledge graph embedding models for large knowledge graphs. We developed a framework based on the frameworks DASK, Pytorch Lightning and Hugging Face to compute embeddings for large-scale knowledge graphs in a hardware-agnostic manner, which is able to address real-world challenges pertaining to the scale of real application. We provide an open-source version of our framework along with a hub of pre-trained models having more than 11.4 B parameters.


翻译:知识嵌入式图的研究主要侧重于学习知识图的连续表达方式,以了解如何预测联系的预测问题。最近制定的框架可以有效地应用于与研究有关的应用。然而,这些框架并不能满足现实世界应用的许多要求。随着知识图的大小不断增大,在这些框架中从商品计算机向计算机集群的计算变得更具挑战性。找到合适的超参数设置时间和计算预算留给了实践者。此外,知识图嵌入框架中的持续学习方面往往被忽视,尽管不断学习在许多现实世界(深)学习驱动的应用中起着重要作用。这些限制可以解释为什么缺少可供公众使用的知识图嵌入大知识图的模型。我们根据DASK、Pytorch Lightning和Hugging Face等框架制定了一个框架,以硬件-氮化方式将大型知识图嵌入成大型知识图,从而能够应对与实际应用规模相关的现实世界挑战。我们提供了框架的公开源版本,同时提供了一个具有超过11.4 B参数的预培训前模型中心。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员