In semantic parsing for question-answering, it is often too expensive to collect gold parses or even gold answers as supervision signals. We propose to convert model outputs into a set of human-understandable statements which allow non-expert users to act as proofreaders, providing error markings as learning signals to the parser. Because model outputs were suggested by a historic system, we operate in a counterfactual, or off-policy, learning setup. We introduce new estimators which can effectively leverage the given feedback and which avoid known degeneracies in counterfactual learning, while still being applicable to stochastic gradient optimization for neural semantic parsing. Furthermore, we discuss how our feedback collection method can be seamlessly integrated into deployed virtual personal assistants that embed a semantic parser. Our work is the first to show that semantic parsers can be improved significantly by counterfactual learning from logged human feedback data.


翻译:在用于解答问题的语义解析中,收集金粒或甚至金质解答作为监督信号往往太昂贵。 我们提议将模型输出转换成一套人类无法理解的语句,让非专家用户能够充当校对员,提供错误标记作为给分析员的学习信号。 由于模型输出是由历史系统建议的,我们是在反事实或非政策、学习设置中运作的。 我们引入了新的估算器,可以有效地利用给定反馈,避免反事实学习中已知的畸形,同时仍然适用于神经语义解析的随机梯度梯度优化。 此外,我们讨论了我们的反馈收集方法如何被无缝地整合到部署的虚拟个人助手中,以嵌入语义解析器。我们的工作首先表明,从登录的人类反馈数据中进行反事实学习,可以大大改进语义解剖析器。

2
下载
关闭预览

相关内容

语义分析的最终目的是理解句子表达的真实语义。但是,语义应该采用什么表示形式一直困扰着研究者们,至今这个问题也没有一个统一的答案。语义角色标注(semantic role labeling)是目前比较成熟的浅层语义分析技术。基于逻辑表达的语义分析也得到学术界的长期关注。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员