Deep motion forecasting models have achieved great success when trained on a massive amount of data. Yet, they often perform poorly when training data is limited. To address this challenge, we propose a transfer learning approach for efficiently adapting pre-trained forecasting models to new domains, such as unseen agent types and scene contexts. Unlike the conventional fine-tuning approach that updates the whole encoder, our main idea is to reduce the amount of tunable parameters that can precisely account for the target domain-specific motion style. To this end, we introduce two components that exploit our prior knowledge of motion style shifts: (i) a low-rank motion style adapter that projects and adjusts the style features at a low-dimensional bottleneck; and (ii) a modular adapter strategy that disentangles the features of scene context and motion history to facilitate a fine-grained choice of adaptation layers. Through extensive experimentation, we show that our proposed adapter design, coined MoSA, outperforms prior methods on several forecasting benchmarks.
翻译:深运动预测模型在接受大量数据培训后取得了巨大成功。 然而,当培训数据有限时,它们往往表现不佳。 为了应对这一挑战,我们建议采用一种转移学习方法,将经过培训的预测模型有效地应用于新的领域,如隐形物剂类型和场景背景。 与更新整个编码器的传统微调方法不同,我们的主要想法是减少可金枪鱼参数的数量,这些参数可以精确地反映目标域特有的运动风格。 为此,我们引入了两个组成部分,利用我们先前对运动风格变化的了解:(一) 低调运动风格适应器,用来预测和调整低维度瓶颈的风格特征;(二) 模块化适应器战略,分离场景背景和运动历史的特征,以便于精确地选择适应层。我们通过广泛的实验,展示了我们提议的调整器设计,即创出MOSA,超越了几个预测基准的先前方法。