Survival analysis is a subfield of statistics concerned with modeling the occurrence time of a particular event of interest for a population. Survival analysis found widespread applications in healthcare, engineering, and social sciences. However, real-world applications involve survival datasets that are distributed, incomplete, censored, and confidential. In this context, federated learning can tremendously improve the performance of survival analysis applications. Federated learning provides a set of privacy-preserving techniques to jointly train machine learning models on multiple datasets without compromising user privacy, leading to a better generalization performance. However, despite the widespread development of federated learning in recent AI research, few studies focus on federated survival analysis. In this work, we present a novel federated algorithm for survival analysis based on one of the most successful survival models, the random survival forest. We call the proposed method Federated Survival Forest (FedSurF). With a single communication round, FedSurF obtains a discriminative power comparable to deep-learning-based federated models trained over hundreds of federated iterations. Moreover, FedSurF retains all the advantages of random forests, namely low computational cost and natural handling of missing values and incomplete datasets. These advantages are especially desirable in real-world federated environments with multiple small datasets stored on devices with low computational capabilities. Numerical experiments compare FedSurF with state-of-the-art survival models in federated networks, showing how FedSurF outperforms deep-learning-based federated algorithms in realistic environments with non-identically distributed data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月25日
Arxiv
0+阅读 · 2023年9月25日
Arxiv
0+阅读 · 2023年9月25日
Arxiv
0+阅读 · 2023年9月22日
Arxiv
0+阅读 · 2023年9月21日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
23+阅读 · 2022年2月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年9月25日
Arxiv
0+阅读 · 2023年9月25日
Arxiv
0+阅读 · 2023年9月25日
Arxiv
0+阅读 · 2023年9月22日
Arxiv
0+阅读 · 2023年9月21日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
23+阅读 · 2022年2月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员