To exploit the expressivity of being able to refer to the type of types, such as for large elimination, dependent type systems will either employ a universe hierarchy or else contend with an inconsistent type-in-type rule. However, these are not be the only possible options. Taking inspiration from Stratified System F, we introduce Stratified Type Theory (StraTT), where rather than stratifying universes by levels, we stratify typing judgements and restrict the domain of dependent function types to some fixed level strictly lower than that of the overall type. Even in the presence of type-in-type, this restriction suffices to enforce consistency of the system. We explore the expressivity of several extensions atop this design. First, the subsystem subStraTT employs McBride's crude-but-effective stratification (also known as displacement) as a simple form of level polymorphism where top-level definitions can be displaced uniformly to any higher level as needed, which is valid due to level cumulativity and plays well with stratified judgements. Second, to recover some expressivity lost due to the restriction on dependent function domains, the full StraTT system includes a separate nondependent function type with floating domains, whose level instead matches that of the overall type. Finally, we have implemented a prototype type checker for StraTT extended with datatypes along with a small type checked core library. While it's possible to show that the subsystem is consistent, showing consistency for the full system with floating nondependent functions remains open. Nevertheless, we believe that the full system is also consistent and have mechanized a syntactic proof of subject reduction. Furthermore, we use our implementation to investigate various well-known type-theoretic type-in-type paradoxes. These examples all fail to type check in expected ways as evidence towards consistency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Random Natural Gradient
Arxiv
0+阅读 · 2023年11月7日
Arxiv
0+阅读 · 2023年11月7日
Arxiv
0+阅读 · 2023年11月4日
Arxiv
0+阅读 · 2023年11月3日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Random Natural Gradient
Arxiv
0+阅读 · 2023年11月7日
Arxiv
0+阅读 · 2023年11月7日
Arxiv
0+阅读 · 2023年11月4日
Arxiv
0+阅读 · 2023年11月3日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员