Private information retrieval (PIR) is a protocol that guarantees the privacy of a user who is in communication with databases. The user wants to download one of the messages stored in the databases while hiding the identity of the desired message. Recently, the benefits that can be obtained by weakening the privacy requirement have been studied, but the definition of weak privacy needs to be elaborated upon. In this paper, we attempt to quantify the weak privacy (i.e., information leakage) in PIR problems by using the R\'enyi divergence that generalizes the Kullback-Leibler divergence. By introducing R\'enyi divergence into the existing PIR problem, the tradeoff relationship between privacy (information leakage) and PIR performance (download cost) is characterized via convex optimization. Furthermore, we propose an alternative PIR scheme with smaller message sizes than the Tian-Sun-Chen (TSC) scheme. The proposed scheme cannot achieve the PIR capacity of perfect privacy since the message size of the TSC scheme is the minimum to achieve the PIR capacity. However, we show that the proposed scheme can be better than the TSC scheme in the weakly PIR setting, especially under a low download cost regime.
翻译:私人信息检索( PIR) 是一份协议, 保障与数据库沟通的用户的隐私。 用户希望下载数据库中存储的一条信息, 并隐藏想要的信息的身份。 最近, 研究了通过削弱隐私要求所能带来的好处, 但需要详细阐述隐私薄弱的定义。 在本文件中, 我们试图用“ R' enyi” 差异来量化PIR问题中的隐私薄弱( 即信息泄漏), 该差异一般化了 Kullback- Leiber 差异。 通过将 R\'enyi 差异引入现有的 PIR 问题, 隐私( 信息泄漏) 和 PIR 性能( 下载成本) 之间的权衡关系通过 convex 优化来定性。 此外, 我们提出了比Tian- Sun- Chen (TSC) 计划小得多的替代 PIR 计划。 拟议的计划无法实现PIR 的完整隐私能力, 因为 TSC 计划的信息规模是实现PIR 能力的最起码的。 但是, 我们表明, 在弱小的 PIR 机制下, 下, 低成本 设定 。