As increasingly more sensitive data is being collected to gain valuable insights, the need to natively integrate privacy controls in data analytics frameworks is growing in importance. Today, privacy controls are enforced by data curators with full access to data in the clear. However, a plethora of recent data breaches show that even widely trusted service providers can be compromised. Additionally, there is no assurance that data processing and handling comply with the claimed privacy policies. This motivates the need for a new approach to data privacy that can provide strong assurance and control to users. This paper presents Zeph, a system that enables users to set privacy preferences on how their data can be shared and processed. Zeph enforces privacy policies cryptographically and ensures that data available to third-party applications complies with users' privacy policies. Zeph executes privacy-adhering data transformations in real-time and scales to thousands of data sources, allowing it to support large-scale low-latency data stream analytics. We introduce a hybrid cryptographic protocol for privacy-adhering transformations of encrypted data. We develop a prototype of Zeph on Apache Kafka to demonstrate that Zeph can perform large-scale privacy transformations with low overhead.
翻译:由于正在收集越来越敏感的数据,以获得宝贵的见解,因此越来越有必要将隐私控制本土地纳入数据分析框架,这一点越来越重要。今天,隐私控制由数据保管员实施,并完全可以使用清晰的数据。然而,最近大量的数据违规情况表明,即使广泛信任的服务提供者也可能受到损害。此外,不能保证数据处理和处理符合声称的隐私政策。这促使有必要对数据隐私采取新的办法,为用户提供有力的保证和控制。本文介绍了Zeph,该系统使用户能够对其数据如何共享和处理设定隐私偏好。Zeph在加密上强制执行隐私政策,并确保第三方应用程序可获得的数据符合用户的隐私政策。Zeph执行实时和规模的隐私数据转换,使数据源达到数千个,从而使其能够支持大规模低浓缩数据流的分析。我们为加密数据进行隐私转换而采用了混合加密协议。我们开发了一个用于低比例的Zephe 数据转换原型,可以进行大比例的ASGASTAFKA, 进行低比例的磁转换。