Contemporary state-of-the-art approaches to Zero-Shot Learning (ZSL) train generative nets to synthesize examples conditioned on the provided metadata. Thereafter, classifiers are trained on these synthetic data in a supervised manner. In this work, we introduce Z2FSL, an end-to-end generative ZSL framework that uses such an approach as a backbone and feeds its synthesized output to a Few-Shot Learning (FSL) algorithm. The two modules are trained jointly. Z2FSL solves the ZSL problem with a FSL algorithm, reducing, in effect, ZSL to FSL. A wide class of algorithms can be integrated within our framework. Our experimental results show consistent improvement over several baselines. The proposed method, evaluated across standard benchmarks, shows state-of-the-art or competitive performance in ZSL and Generalized ZSL tasks.
翻译:现代最先进的零热学习方法(ZSL)培训基因网,以综合以所提供的元数据为条件的示例。此后,分类人员接受关于这些合成数据的培训,并受到监督。在这项工作中,我们引入Z2FSL,这是一个端到端的基因化ZSL框架,它使用这种方法作为骨干,将其综合输出输入到少热学习(FSL)算法中。这两个模块是联合培训的。Z2FSL用FSL算法解决ZSL问题,实际上将ZSL减到FSL。一大批的算法可以纳入我们的框架。我们的实验结果显示,在几个基线上取得了一致的改进。拟议的方法,经过跨标准基准的评估,显示了ZSL和通用 ZSL任务中的最新或竞争性表现。