The expressive power of message passing GNNs is upper-bounded by Weisfeiler-Lehman (WL) test. To achieve high expressive GNNs beyond WL test, we propose a novel graph isomorphism test method, namely Twin-WL, which simultaneously passes node labels and node identities rather than only passes node label as WL. The identity-passing mechanism encodes complete structure information of rooted subgraph, and thus Twin-WL can offer extra power beyond WL at distinguishing graph structures. Based on Twin-WL, we implement two Twin-GNNs for graph classification via defining readout function over rooted subgraph: one simply readouts the size of rooted subgraph and the other readouts rich structure information of subgraph following a GNN-style. We prove that the two Twin-GNNs both have higher expressive power than traditional message passing GNNs. Experiments also demonstrate the Twin-GNNs significantly outperform state-of-the-art methods at the task of graph classification.
翻译:传递 GNNs 的电文的表达力由 Weisfeiler-Lehman (WL) 测试(WL) 测试而上方。 为了在 WL 测试之外实现高清晰度 GNNs 测试, 我们提议了一个新颖的图形异形测试方法, 即双WL, 它同时传递节点标签和节点身份, 而不仅仅是传递节点标签。 身份传递机制将根基子图的完整结构信息编码起来, 因此双WL 可以在区分图形结构中提供超出 WL 的超能力 。 根据双WL, 我们实施两个双GNNNs 用于图形分类, 用于定义根基子图的读取功能: 一种只是读出根子的子图的大小, 另一种根据GNNN 模式的子图解读取的丰富结构信息。 我们证明两个双GNNNNs 的表达力都高于通过 GNNS 的传统信息。 实验还展示了双GNNNS 在图形分类任务中显著超出常规状态的方法 。