Let $A \in \mathbb{Z}^{m \times n}$ be an integral matrix and $a$, $b$, $c \in \mathbb{Z}$ satisfy $a \geq b \geq c \geq 0$. The question is to recognize whether $A$ is $\{a,b,c\}$-modular, i.e., whether the set of $n \times n$ subdeterminants of $A$ in absolute value is $\{a,b,c\}$. We will succeed in solving this problem in polynomial time unless $A$ possesses a duplicative relation, that is, $A$ has nonzero $n \times n$ subdeterminants $k_1$ and $k_2$ satisfying $2 \cdot |k_1| = |k_2|$. This is an extension of the well-known recognition algorithm for totally unimodular matrices. As a consequence of our analysis, we present a polynomial time algorithm to solve integer programs in standard form over $\{a,b,c\}$-modular constraint matrices for any constants $a$, $b$ and $c$.


翻译:问题在于确认美元是否为$a, b, c $-modual, 即绝对值为$n n un minutes 的一套美元绝对值为$a, b, c 美元, c 美元 美元。我们将在多元时间成功地解决这个问题,除非美元具有重复关系,即美元具有非零 美元 美元 = 美元 = geq b, c = geq c = geq = 0 美元。 问题在于确认美元是否为$a, b, c = 美元 美元 = 美元 = $k_ 美元 = = k_ 2 美元。这是我们分析的结果,我们为任何完全单一的矩阵提供了一种众所周知的识别算法, 美元 美元 = 美元 美元 = 美元 = 美元 = 美元 = = 美元 = 美元 = 2 = = = 美元 = = 美元 = = = 美元 = = = = 任何标准的矩阵 美元 = 美元 = =xxxxxxxxxxxxxxxx y y y = = 美元 = 美元 = 美元 = = = = = = = = = = = = = = = = = 美元 = = = = = = = = = = = = = = = = 美元 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年11月18日
Sum-of-Squares Lower Bounds for Sparse Independent Set
Arxiv
0+阅读 · 2021年11月17日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员