We study the $k$-server problem with time-windows. In this problem, each request $i$ arrives at some point $v_i$ of an $n$-point metric space at time $b_i$ and comes with a deadline $e_i$. One of the $k$ servers must be moved to $v_i$ at some time in the interval $[b_i, e_i]$ to satisfy this request. We give an online algorithm for this problem with a competitive ratio of ${\rm polylog} (n,\Delta)$, where $\Delta$ is the aspect ratio of the metric space. Prior to our work, the best competitive ratio known for this problem was $O(k \cdot {\rm polylog}(n))$ given by Azar et al. (STOC 2017). Our algorithm is based on a new covering linear program relaxation for $k$-server on HSTs. This LP naturally corresponds to the min-cost flow formulation of $k$-server, and easily extends to the case of time-windows. We give an online algorithm for obtaining a feasible fractional solution for this LP, and a primal dual analysis framework for accounting the cost of the solution. Together, they yield a new $k$-server algorithm with poly-logarithmic competitive ratio, and extend to the time-windows case as well. Our principal technical contribution lies in thinking of the covering LP as yielding a {\em truncated} covering LP at each internal node of the tree, which allows us to keep account of server movements across subtrees. We hope that this LP relaxation and the algorithm/analysis will be a useful tool for addressing $k$-server and related problems.
翻译:我们在时间窗上研究 $k$- 服务器问题。 在这个问题中, 每一个要求美元都会在某个时间点以美元到来, 美元是美元, 美元是美元, 美元是美元, 美元是美元, 期限是美元。 一个 美元服务器必须在 $[b_i, e_ i] 之间的某个时间移动到 美元, 以满足这个要求。 我们给出一个在线算法, 这个问题的竞争性比率为$( rm ) 多边比 (n, delta) 美元, 美元是衡量空间的方面比率。 在我们工作之前, 这个问题的最佳竞争比率是 $( k) 美元 美元 。 由 Azar 和 al ( STOC 2017) 提供的 美元服务器必须在某些时候移动到 美元 美元 。 我们的算法基于一个新的覆盖程序, $k- server 的覆盖成本流配法 $k- server, 和 很容易地延伸到我们最有竞争力的货币 的货币, IM 解算法, 的计算成本 。