Let $D$ be a digraph and let $\lambda(D)$ denote the number of vertices in a longest path of $D$. For a pair of vertex-disjoint induced subdigraphs $A$ and $B$ of $D$, we say that $(A,B)$ is a partition of $D$ if $V(A)\cup V(B)=V(D).$ The Path Partition Conjecture (PPC) states that for every digraph, $D$, and every integer $q$ with $1\leq q\leq\lambda(D)-1$, there exists a partition $(A,B)$ of $D$ such that $\lambda(A)\leq q$ and $\lambda(B)\leq\lambda(D)-q.$ Let $T$ be a digraph with vertex set $\{u_1,\dots, u_t\}$ and for every $i\in [t]$, let $H_i$ be a digraph with vertex set $\{u_{i,j_i}\colon\, j_i\in [n_i]\}$. The {\em composition} $Q=T[H_1,\dots , H_t]$ of $T$ and $H_1,\ldots, H_t$ is a digraph with vertex set $\{u_{i,j_i}\colon\, i\in [t], j_i\in [n_i]\}$ and arc set $$A(Q)=\cup^t_{i=1}A(H_i)\cup \{u_{i,j_i}u_{p,q_p}\colon\, u_iu_p\in A(T), j_i\in [n_i], q_p\in [n_p]\}.$$ We say that $Q$ is acyclic {(semicomplete, respectively)} if $T$ is acyclic {(semicomplete, respectively)}. In this paper, we introduce a conjecture stronger than PPC using a property first studied by Bang-Jensen, Nielsen and Yeo (2006) and show that the stronger conjecture holds for wide families of acyclic and semicomplete compositions.
翻译:$( A, B) 是美元, 如果$V( A)\ cup V( B) = V( D) 。 路径分割( PPC) 表示, 每张引用, $( D) 和每整美元, $1leq qq美元。 对于一对顶端分解 $A, 美元和美元美元, 我们说, $( A, B) 是美元, 如果$V( A)\ cup V( B) =V( D) 美元, 路径分割( PPC) 表示, 每张引用, $$( D) 美元, 和每整美元, $QQqqqq 美元, $( B) 美元, 美元= 美元= 美元, 美元= 美元=a) a, i\ i i i i 和 美元。 [ t __ h) a, et_ i i i i i, i_ i_ a, i i i_ i_ a, i_ a, i_ i_ i_ a, i_ i_ i_ a, i_ i_ i_ i_