We study the $k$-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most $k$ facilities. The goal is to minimize the sum of distances from each client to its nearest open facility which is discounted by its own discount value, with minimum contribution being zero. $k$-median with discounts unifies many classic clustering problems, e.g., $k$-center, $k$-median, $k$-facility $l$-centrum, etc. We obtain a bi-criteria constant-factor approximation using an iterative LP rounding algorithm. Our result improves the previously best approximation guarantee for $k$-median with discounts [Ganesh et al., ICALP'21]. We also devise bi-criteria constant-factor approximation algorithms for the matroid and knapsack versions of median clustering with discounts.
翻译:我们研究的是带有折扣问题的中间方美元,我们得到非负差折扣的客户,并寻求在大多数设施中开放,目标是尽量减少每个客户与最接近的开放设施的距离之和,这种距离以其自己的贴现价值折扣,最低缴款为零。 以折价折价折价的中间方美元统一了许多典型的集群问题,例如,k美元中方美元、k美元中方美元、l美元中方美元中方美元中方美元等。我们利用反复的LP四舍五入算法获得了双标准常数常数近似法。我们的结果改进了以前用折扣[Ganesh等人,CricalP'21]为中间方美元提供的最佳近似保证。我们还设计了配有折扣的婴儿和Knapsack中位组合的双标准常价常数近似算法。