Some variants of the (block) Gauss--Seidel iteration for the solution of linear systems with $M$-matrices in (block) Hessenberg form are discussed. Comparison results for the asymptotic convergence rate of some regular splittings are derived: in particular, we prove that for a lower-Hessenberg M-matrix $\rho(P_{GS})\geq \rho(P_S)\geq \rho(P_{AGS})$, where $P_{GS}, P_S, P_{AGS}$ are the iteration matrices of the Gauss--Seidel, staircase, and anti-Gauss--Seidel method. This is a result that does not seem to follow from classical comparison results, as these splittings are not directly comparable. It is shown that the concept of stair partitioning provides a powerful tool for the design of new variants that are suited for parallel computation.
翻译:(区块) Gaus-Seidel 迭代用于解决在(区块) Hessenberg 格式中以美元表示的线性系统(以美元表示) 的溶液(以美元表示) 。 对一些常规分裂的无症状趋同率的比较结果进行了分析: 特别是, 我们证明对于低赫森堡 M-matrix $\rho(P ⁇ GS})\geq\rho(P_S)\geq\rho(P ⁇ AGS}) $(以美元表示) 、 P_S、 P ⁇ AGS} $(以美元表示) 是高斯- 赛德尔、 楼梯和 反高斯- 沙乌斯- 席德尔 方法的循环矩阵。 这似乎是传统比较的结果, 因为这些分裂不具有直接可比性。 事实表明, 台阶分配概念为设计适合平行计算的新变式提供了强有力的工具。