Machine learning models are vulnerable to adversarial perturbations, and a thought-provoking paper by Bubeck and Sellke has analyzed this phenomenon through the lens of over-parameterization: interpolating smoothly the data requires significantly more parameters than simply memorizing it. However, this "universal" law provides only a necessary condition for robustness, and it is unable to discriminate between models. In this paper, we address these gaps by focusing on empirical risk minimization in two prototypical settings, namely, random features and the neural tangent kernel (NTK). We prove that, for random features, the model is not robust for any degree of over-parameterization, even when the necessary condition coming from the universal law of robustness is satisfied. In contrast, for even activations, the NTK model meets the universal lower bound, and it is robust as soon as the necessary condition on over-parameterization is fulfilled. This also addresses a conjecture in prior work by Bubeck, Li and Nagaraj. Our analysis decouples the effect of the kernel of the model from an "interaction matrix", which describes the interaction with the test data and captures the effect of the activation. Our theoretical results are corroborated by numerical evidence on both synthetic and standard datasets (MNIST, CIFAR-10).
翻译:机器学习模型很容易受到对抗性干扰,布贝克和塞勒克的一篇发人深思的论文通过过度参数化的镜头分析了这一现象:数据顺利的相互推断要求的参数远远多于记忆的参数。然而,这一“普遍”法只为稳健提供了必要的条件,无法区分模型。在本文中,我们通过侧重于在两种原型环境中,即随机特征和神经核内核(NTK)最大限度地减少实验性风险来弥补这些差距。我们证明,对于随机特征而言,该模型不适于任何程度的过度参数化,即使满足了来自普遍强健法的必要条件。相比之下,即使激活,NTK模型也满足了普遍较低的条件,而且在超标化的必要条件得到满足后,该模型就变得牢固了。这还涉及Bubeck、Li和Nagaraj(NGaraj)先前工作中的一个预测。我们的分析表明,该模型的内核内核部分对于任何程度的超度度度值,即使满足了来自普遍强健法的必要条件。 相比之下,“ ” 我们的内定的模型的模型与数据模型模型的模型和模型的模拟模型的模拟模型的模型的模拟模型的模拟模型对结果的模拟模型的模拟模型的模拟效果是模拟的交互作用。