This paper studies the varying coefficient model in tail index regression. The varying coefficient model is known as one of efficient semiparametric model to avoid curse of dimensionality when including the large covariates to the model. Actually, the varying coefficient model is useful in mean, quantile, and other regression. Tail index regression is no exception. On the other hand, the varying coefficient model is flexible, but leaner and simpler models are preferred for applications. Therefore, it is important to evaluate whether the estimated coefficient function is significantly varying with covariate or not. If the effect of non-lineality of the model is weak, the varying coefficient structure reduces to more simpler model, such as constant or zero. Accordingly, hypothesis test for model assessment in varying coefficient model is often discussed in mean and quantile regression, but there are no results in tail index regression yet. In this paper, we study the hypothesis test in varying coefficient models for tail index regression.
翻译:本文研究了尾部指数回归中不同的系数模型。 不同的系数模型被称为高效半参数模型, 以避免在将大共变量纳入模型时对维度的诅咒。 事实上, 不同的系数模型在平均值、 量化和其他回归中有用。 反尾指数回归并非例外。 另一方面, 不同的系数模型是灵活的, 但对于应用来说, 偏爱更精细、 更简单的模型。 因此, 重要的是要评估估计的系数函数是否随共变量而有很大差异。 如果模型的非线性效果弱, 不同的系数结构会降低到更简单的模型, 如常数或零。 因此, 不同系数模型评估的假设测试通常在平均值和四分位回归中讨论, 但是在尾指数回归中还没有结果。 在本文中, 我们研究对尾部指数回归的不同系数模型的假设测试。