The popular systemic risk measure CoVaR (conditional Value-at-Risk) is widely used in economics and finance. Formally, it is defined as an (extreme) quantile of one variable (e.g., losses in the financial system) conditional on some other variable (e.g., losses in a bank's shares) being in distress and, hence, measures the spillover of risks. In this article, we propose a dynamic "Co-Quantile Regression", which jointly models VaR and CoVaR semiparametrically. We propose a two-step M-estimator drawing on recently proposed bivariate scoring functions for the pair (VaR, CoVaR). Among others, this allows for the estimation of joint dynamic forecasting models for (VaR, CoVaR). We prove the asymptotic normality of the proposed estimator and simulations illustrate its good finite-sample properties. We apply our co-quantile regression to correct the statistical inference in the existing literature on CoVaR, and to generate CoVaR forecasts for real financial data, which are shown to be superior to existing methods.
翻译:流行的系统性风险计量 COVaR (有条件的值-风险值-风险) 被广泛用于经济和金融领域。 形式上, 它被定义为一个变量( 如金融系统损失)的( 极端) 量数( 极限), 条件是某些其他变量( 例如银行股份损失) 处于困境, 从而衡量风险的溢出。 在本条中, 我们提出一个动态的“ 共量回归”, 共同模型 VaR 和 CoVaR 的半参数性。 我们建议使用一个双步 M 估计符, 以最近提议的对子( VaR 、 CoVaR ) 双倍评分函数为基础。 除其他外, 允许对联合动态预测模型( VaR 、 CoVaR ) 进行估算。 我们证明, 拟议的估测和模拟无症状常态的常态性, 说明其良好的限量采集特性。 我们使用共量回归来纠正现有文献中的统计推论, 并生成现有CoaR 数据为真实的预测方法。