We investigate the computational complexity of the discrete logarithm, the computational Diffie-Hellman and the decisional Diffie-Hellman problems in some identity black-box groups G_{p,t}, where p is a prime number and t is a positive integer. These are defined as quotient groups of vector space Z_p^{t+1} by a hyperplane H given through an identity oracle. While in general black-box groups with unique encoding these computational problems are classically all hard and quantumly all easy, we find that in the groups G_{p,t} the situation is more contrasted. We prove that while there is a polynomial time probabilistic algorithm to solve the decisional Diffie-Hellman problem in $G_{p,1}$, the probabilistic query complexity of all the other problems is Omega(p), and their quantum query complexity is Omega(sqrt(p)). Our results therefore provide a new example of a group where the computational and the decisional Diffie-Hellman problems have widely different complexity.
翻译:我们调查离散对数的计算复杂性, 计算 diffie- Hellman 和决定性 Diffie- Hellman 在某些身份黑盒组 G ⁇ p, t}, p 是质数, t是正整数。 这些定义为由超高平流机提供的矢量空间的商数组 ⁇ p ⁇ t+1} 。 虽然在一般黑箱组中, 这些计算问题通常非常难,数量也非常容易, 但是我们发现, 在 G ⁇ p, t} 情况比较不同。 我们证明, 虽然在 $ ⁇ p, 1} 美元中存在解决决定性 Diffie- Hellman 问题的综合时间概率算法, 但所有其他问题的概率性查询复杂度是 Omega(p), 其量度查询复杂度是 Omega(sqrt) 。 因此, 我们的结果提供了一个新的例子, 一组的计算和决定Diffie- Hellman 问题复杂程度大不相同。