In this paper, we utilize information theory to study the fundamental performance limitations of generic feedback systems, where both the controller and the plant may be any causal functions/mappings while the disturbance can be with any distributions. More specifically, we obtain fundamental $\mathcal{L}_p$ bounds on the control error, which are shown to be completely characterized by the conditional entropy of the disturbance, based upon the entropic laws that are inherent in any feedback systems. We also discuss the generality and implications (in, e.g., fundamental limits of learning-based control) of the obtained bounds.
翻译:在本文中,我们利用信息理论来研究通用反馈系统的基本性能限制,即控制器和工厂都可能是任何因果功能/绘图,而扰动可能随任何分布而发生。更具体地说,我们获得了控制错误的基本值$mathcal{L ⁇ p$界限,根据任何反馈系统所固有的成文法,这些界限被证明完全以扰动的附质为特征。我们还讨论了所获得的界限的一般性和影响(例如学习控制的根本限制)。