Multi-instance point cloud registration is the problem of estimating multiple poses of source point cloud instances within a target point cloud. Solving this problem is challenging since inlier correspondences of one instance constitute outliers of all the other instances. Existing methods often rely on time-consuming hypothesis sampling or features leveraging spatial consistency, resulting in limited performance. In this paper, we propose PointCLM, a contrastive learning-based framework for mutli-instance point cloud registration. We first utilize contrastive learning to learn well-distributed deep representations for the input putative correspondences. Then based on these representations, we propose a outlier pruning strategy and a clustering strategy to efficiently remove outliers and assign the remaining correspondences to correct instances. Our method outperforms the state-of-the-art methods on both synthetic and real datasets by a large margin.
翻译:多因数点云层登记是估算目标点云层中源点云层实例的多重构成的问题。 解决这一问题具有挑战性,因为一个实例的内线通信构成所有其他实例的外向。 现有方法往往依赖耗时的假设抽样或利用空间一致性的特征,从而造成有限的性能。 在本文中,我们提议PointCLM, 是一个以对比性学习为基础的模型, 用于粘结点云层登记。 我们首先利用对比性学习来了解输入图象通信的分布得当的深层表达方式。 然后, 根据这些表达方式, 我们提出一个外部剪切战略和组合战略, 以高效清除外向线, 并指派其余的对应方法纠正各种情形。 我们的方法优于大边缘合成和真实数据集的最先进的方法 。