We present a straightforward and efficient way to estimate dynamics models for unstable robotic systems. Specifically, we show how to exploit the differentiability of Gaussian processes to create a state-dependent linearized approximation of the true continuous dynamics. Our approach is compatible with most Gaussian process approaches for system identification, and can learn an accurate model using modest amounts of training data. We validate our approach by iteratively learning the system dynamics of an unstable system such as a 9-D segway (using only one minute of data) and we show that the resulting controller is robust to unmodelled dynamics and disturbances, while state-of-the-art control methods based on nominal models can fail under small perturbations.
翻译:我们提出了一种直接而有效的方法来估计不稳定机器人系统的动态模型。 具体地说,我们展示了如何利用高斯过程的可差异性来创建一个以国家为依存的真正连续动态的线性近似。 我们的方法与大多数高斯过程的系统识别方法相容,并且可以使用少量的培训数据来学习一个准确的模型。 我们通过反复学习一个不稳定系统的系统动态来验证我们的方法,比如一个9-D系统(只使用一分钟的数据),我们证明由此产生的控制器对非模型化的动态和扰动非常强大,而以名义模型为基础的最先进的控制方法在小的扰动下可以失败。