With data-outsourcing becoming commonplace, there grows a need for secure outsourcing of data and machine learning models. Namely, data and model owners (client) often have a need for their information to remain private and secure against the potentially untrusted computing resource (server) to whom they want to outsource said data and models to. Various approaches to privacy-preserving machine learning (PPML) have been devised with different techniques and solutions introduced in the past. These solutions often involved one of two compromises: (1) client-server interactions to allow intermediary rounds of decryption and re-encryption of data or (2) complex architectures for multi-party computation. This paper devises a paradigm using Fully Homomorphic Encryption (FHE) that minimizes architectural complexity and removes client-side involvement during the training and prediction lifecycle of machine learning models. In addition, the paradigm proposed in this work achieves both model security as well as data security. To remove client-side involvement, the devised paradigm proposes a no decryption approach that allows the server to handle PPML in its entirety without rounds of decryption and re-encryption. To the best of our knowledge, this paradigm is the first to achieve privacy-preserving decision tree training with no decryption while maintaining a simple client-server architecture.
翻译:暂无翻译