We present an efficient semiparametric variational method to approximate the posterior distribution of Bayesian regression models combining subjective prior beliefs with an empirical risk function. Our results apply to all the mixed models predicting the data through a linear combination of the available covariates, including, as special cases, generalized linear mixed models, support vector machines, quantile and expectile regression. The iterative procedure designed for climbing the evidence lower bound only requires closed form updating formulas or the calculation of univariate numerical integrals, when no analytic solutions are available. Neither conjugacy nor elaborate data augmentation strategies are needed. As a generalization, we also extend our methodology in order to account for inducing sparsity and shrinkage priors, with particular attention to the generalizations of the Bayesian Lasso prior. The properties of the derived algorithm are then assessed through an extensive simulation study, in which we compare our proposal with Markov chain Monte Carlo, conjugate mean field variational Bayes and Laplace approximation in terms of posterior approximation accuracy and prediction error. A real data example is then presented through a probabilistic load forecasting application on the US power load consumption data.
翻译:我们提出了一个有效的半参数变异方法,以近似巴伊西亚回归模型的后向分布,将主观先前的信念与经验性风险功能相结合。我们的结果适用于所有混合模型,通过现有共变法的线性组合预测数据,包括作为特例的通用线性混合模型、辅助矢量机、微量和预期回归。为爬升证据而设计的迭代程序仅需要封闭式更新公式或计算单象体数字集成,在没有解析解决方案的情况下;不需要同系或详细制定数据增强战略。作为一般化,我们还扩展了我们的方法,以核算诱发紧张和缩缩缩前数,特别注意以前巴伊西亚拉索的概括性。然后通过广泛的模拟研究对衍生算法的特性进行评估,在这种研究中,我们将我们的提案与Markov链 Monte Carlo、 conjugate 表示场变异性海湾和Laplace近似近似值的后近似近似性精确性和预测错误方面进行比较。随后通过对美国电荷消耗数据的预测性负载数据进行预测应用来展示一个真实的数据实例。