Isotonic regression or monotone function estimation is a problem of estimating function values under monotonicity constraints, which appears naturally in many scientific fields. This paper proposes a new Bayesian method with global-local shrinkage priors for estimating monotone function values. Specifically, we introduce half shrinkage priors for positive valued random variables and assign them for the first order differences of function values. We also develop fast and simple Gibbs sampling algorithms for full posterior analysis. By incorporating advanced shrinkage priors, the proposed method is adaptive to local abrupt changes or jump in target functions. We show this adaptive property theoretically by proving that the posterior mean estimators are robust to large differences and asymptotic risk for unchanged points can be improved. Finally, we demonstrate the proposed methods through simulations and applications to a real data set.
翻译:单声波回归或单声波函数估计是在许多科学领域自然可见的单一度限制下估算功能值的问题。 本文建议采用新的巴伊西亚方法, 采用全球- 本地缩缩前序方法来估算单声波函数值。 具体地说, 我们为正值随机随机变量引入了一半缩缩缩前程, 为函数值的第一顺序差异指定了它们。 我们还开发了快速和简单的 Gibs 抽样算法, 用于完整的后继分析。 通过纳入先进的缩微前程, 拟议的方法可以适应本地的突变或目标功能的跳跃。 我们从理论上展示了这种适应性属性, 我们通过证明后端平均估计值对大差异是强大的, 对不变点的零位风险是可以改进的。 最后, 我们通过模拟和应用真实的数据集来展示拟议方法 。