The maximum likelihood threshold (MLT) of a graph $G$ is the minimum number of samples to almost surely guarantee existence of the maximum likelihood estimate in the corresponding Gaussian graphical model. We give a new characterization of the MLT in terms of rigidity-theoretic properties of $G$ and use this characterization to give new combinatorial lower bounds on the MLT of any graph. We use the new lower bounds to give high-probability guarantees on the maximum likelihood thresholds of sparse Erd{\"o}s-R\'enyi random graphs in terms of their average density. These examples show that the new lower bounds are within a polylog factor of tight, where, on the same graph families, all known lower bounds are trivial. Based on computational experiments made possible by our methods, we conjecture that the MLT of an Erd{\"o}s-R\'enyi random graph is equal to its generic completion rank with high probability. Using structural results on rigid graphs in low dimension, we can prove the conjecture for graphs with MLT at most $4$ and describe the threshold probability for the MLT to switch from $3$ to $4$. We also give a geometric characterization of the MLT of a graph in terms of a new ``lifting'' problem for frameworks that is interesting in its own right. The lifting perspective yields a new connection between the weak MLT (where the maximum likelihood estimate exists only with positive probability) and the classical Hadwiger-Nelson problem.
翻译:图形$ G$ 的最大可能性阈值( MLT) 是样本的最小值, 几乎肯定保证相应的高斯图形模型中存在最大可能性估计值。 我们给出了高斯图形图形模型中最大可能性最小值的最小值。 我们给出了高斯图形模型中最硬性理论特性的新特征, 并使用这一特征来给任何图形中最低值的新的组合下下限。 我们用新的下限来给稀薄的厄尔德斯"奥"斯"罗斯" -R\'enyi随机图的最大可能性阈值提供高概率保证, 以其平均密度为标准。 这些示例显示, 新的更低限值常规值位于一个紧凑的多元值系数中, 在同一图表中, 所有已知的下限都是微不足道的。 根据我们的方法进行的计算实验, 我们推测, Erd\" o" o"s- R\\' eny 随机图与其一般完成等级相等, 概率很高。 仅使用硬度图表中的结构结果, 我们可以证明与MLT 以最多4美元为最低值和最低度基准值的深度框架之间的直值。