Sparse-dense partitions was introduced by Feder, Hell, Klein, and Motwani [STOC 1999, SIDMA 2003] as a tool to solve partitioning problems. In this paper, the following result concerning independent sets in graphs having sparse-dense partitions is presented: if a $n$-vertex graph $G$ admits a sparse-dense partition concerning classes $\mathcal S$ and $\mathcal D$, where $\mathcal D$ is a subclass of the complement of $K_t$-free graphs (for some ~$t$), and graphs in $\mathcal S$ can be recognized in polynomial time, then: enumerate all maximal independent sets of $G$ (or find its maximum) can be performed in $n^{O(1)}$ time whenever it can be done in polynomial time for graphs in the class $\mathcal S$. This result has the following interesting implications: A P versus NP-hard dichotomy for Max. Independent Set on graphs whose vertex set can be partitioned into $k$ independent sets and $\ell$ cliques, so-called $(k, \ell)$-graphs. concerning the values of $k$ and $\ell$ of $(k, \ell)$-graphs. A P-time algorithm that does not require $(1,\ell)$-partitions for determining whether a $(1,\ell)$-graph $G$ is well-covered. Well-covered graphs are graphs in which every maximal independent set has the same cardinality. The characterization of conflict graph classes for which the conflict version of a P-time graph problem is still in P assuming such classes. Conflict versions of graph problems ask for solutions avoiding pairs of conflicting elements (vertices or edges) described in conflict graphs.
翻译: Feder、 Hell、 Klein 和 Motwani [STOC 1999、 SIDMA 2003] 作为解决分割问题的工具 。 在本文中, 显示关于含有稀有重度分区的图表中独立数据集的以下结果 : 如果 $- verversex 图形 $G$ 承认对类的稀有重度分区 $\ mathcal S$ 和 $\ mathcal D$, 其中$\ mathcal D$ 是 平面图( 对于某些 ~美元 美元 ) 和 $\ mathal S$ 图表的补充的子类 。 那么, 如果一个 $ G$ (或找到其最大值), 美元 美元, 美元 美元, 美元 或 美元 美元 的平面图, 则以 美元 美元 。 将所有最大独立的独立数 数 。 美元 数字 和 美元 数字 的 数字, 以 美元 以 美元 平面 的平面 表示 。