We formulate a stochastic process, FiLex, as a mathematical model of lexicon entropy in deep learning-based emergent language systems. Defining a model mathematically allows it to generate clear predictions which can be directly and decisively tested. We empirically verify across four different environments that FiLex predicts the correct correlation between hyperparameters (training steps, lexicon size, learning rate, rollout buffer size, and Gumbel-Softmax temperature) and the emergent language's entropy in 20 out of 20 environment-hyperparameter combinations. Furthermore, our experiments reveal that different environments show diverse relationships between their hyperparameters and entropy which demonstrates the need for a model which can make well-defined predictions at a precise level of granularity.
翻译:我们设计了一个剖析过程, FiLex, 作为深层学习的新兴语言系统中的词汇酶的数学模型。 定义一个数学模型, 使得它能够产生清晰的预测, 可以直接和果断地测试。 我们从四个不同环境的经验中核查FiLex预测了超参数( 训练步骤、 字典大小、 学习速度、 推出缓冲大小 和 Gumbel- Softmax 温度 ) 与20个环境- 健康参数组合中的20个新兴语言的酶之间的正确关系。 此外, 我们的实验显示, 不同的环境显示了它们的超参数和英特质之间的不同关系, 这表明需要一种模型, 能够在精确的颗粒度上做出精确的精确的预测。