We present a method for automatically building diagrams for olympiad-level geometry problems and implement our approach in a new open-source software tool, the Geometry Model Builder (GMB). Central to our method is a new domain-specific language, the Geometry Model-Building Language (GMBL), for specifying geometry problems along with additional metadata useful for building diagrams. A GMBL program specifies (1) how to parameterize geometric objects (or sets of geometric objects) and initialize these parameterized quantities, (2) which quantities to compute directly from other quantities, and (3) additional constraints to accumulate into a (differentiable) loss function. A GMBL program induces a (usually) tractable numerical optimization problem whose solutions correspond to diagrams of the original problem statement, and that we can solve reliably using gradient descent. Of the 39 geometry problems since 2000 appearing in the International Mathematical Olympiad, 36 can be expressed in our logic and our system can produce diagrams for 94% of them on average. To the best of our knowledge, our method is the first in automated geometry diagram construction to generate models for such complex problems.


翻译:我们提出了一个方法,用于自动绘制olympiad等级几何问题的图表,并在一个新的开放源码软件工具“几何模型构建器”(GMB)中实施我们的方法。我们方法的核心是一种新的特定域语言“几何模型构建语言”(GMBL),用于具体说明几何问题,以及用于构建图表的额外元数据。一个GMBL程序具体规定:(1)如何参数化几何物体(或几何物体组),并初始化这些参数数量,(2)从其他数量中直接计算数量,(3)积累到(可区分的)损失函数的额外限制。一个GMBL程序引出了一种(通常)可移动的数字优化问题,其解决方案与原始问题语句的图表相对应,而且我们可以使用梯度下来可靠地解决。在国际数学奥林匹克学上出现的2000年以来的39个几何问题中,36个可以以逻辑方式表达,而我们的系统可以平均为其中94%的参数绘制图表。据我们所知,我们的方法是第一个在自动几何图构造中生成这类复杂问题模型的模型。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
41+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员