In this paper, we present an algorithmic approach to design and construct planar truss structures based on symmetric lattices using modular elements. The method of assembly is similar to Leonardo grids as they both rely on the property of interlocking. In theory, our modular elements can be assembled by the same type of binary operations. Our modular elements embody the principle of geometric interlocking, a principle recently introduced in literature that allows for pieces of an assembly to be interlocked in a way that they can neither be assembled nor disassembled unless the pieces are subjected to deformation or breakage. We demonstrate that breaking the pieces can indeed facilitate the effective assembly of these pieces through the use of a simple key-in-hole concept. As a result, these modular elements can be assembled together to form an interlocking structure, in which the locking pieces apply the force necessary to hold the entire assembly together.
翻译:在本文中,我们展示了一种基于使用模块元件的对称轨格设计和构造平面三角形结构的算法方法。 组装方法与莱昂纳多网格相似, 因为两者都依赖互锁特性。 理论上, 我们的模块元件可以由同一类型的二进制操作组装。 我们的模块元件体现了几何交接原则, 最近在文献中引入了这一原则, 允许将一个组件的部件相互连接, 除非碎片受到变形或断裂, 否则它们无法组装或拆解。 我们证明, 碎块确实能够通过使用简单的密钥孔概念来方便这些碎片的有效组装。 结果, 这些模块元件可以组合成一个连锁结构, 在这种结构中, 锁定元件运用了将整个组装在一起的必要力量。