A new domain decomposition preconditioner is introduced for efficiently solving linear systems Ax = b with a symmetric positive definite matrix A. The particularity of the new preconditioner is that it is not necessary to have access to the so-called Neumann matrices (i.e.: the matrices that result from assembling the variational problem underlying A restricted to each subdomain). All the components in the preconditioner can be computed with the knowledge only of A (and this is the meaning given here to the word algebraic). The new preconditioner relies on the GenEO coarse space for a matrix that is a low-rank modification of A and on the Woodbury matrix identity. The idea underlying the new preconditioner is introduced here for the first time with a first version of the preconditioner. Some numerical illustrations are presented. A more extensive presentation including some improved variants of the new preconditioner can be found in [7] (https://hal.archives-ouvertes.fr/hal-03258644).
翻译:为有效解决线性系统Ax = b 和对称正数确定矩阵A,引入了新的域分解先决条件。 新的先决条件A的特性是,没有必要访问所谓的Neumann矩阵(即:根据A 仅限于每个子域的变异性问题组合产生的矩阵)。只有A才知道,才能计算先决条件中的所有组成部分(此处是代数词的含义)。新的先决条件人依靠GenEO coarse空间来获取一个对 A 和 Woodbury 矩阵特性进行低级修改的矩阵。新的先决条件的理念首次在这里引入,先使用第一个版本的前提条件。提供了一些数字示例。在[7]中可以找到更为广泛的介绍,包括新先决条件的一些改进的变式(https://hal.archives-ouverties.fr/hal-03258644)。