Artisanal and Small-scale Gold Mining (ASGM) is an important source of income for many households, but it can have large social and environmental effects, especially in rainforests of developing countries. The Sentinel-2 satellites collect multispectral images that can be used for the purpose of detecting changes in water extent and quality which indicates the locations of mining sites. This work focuses on the recognition of ASGM activities in Peruvian Amazon rainforests. We tested several semi-supervised classifiers based on Support Vector Machines (SVMs) to detect the changes of water bodies from 2019 to 2021 in the Madre de Dios region, which is one of the global hotspots of ASGM activities. Experiments show that SVM-based models can achieve reasonable performance for both RGB (using Cohen's $\kappa$ 0.49) and 6-channel images (using Cohen's $\kappa$ 0.71) with very limited annotations. The efficacy of incorporating Lab color space for change detection is analyzed as well.
翻译:对许多家庭来说,手工和小规模采金业是一个重要的收入来源,但它可以产生巨大的社会和环境影响,特别是在发展中国家的雨林中。哨兵-2号卫星收集了多光谱图像,可用于探测水的范围和质量的变化,表明矿址的位置。这项工作的重点是承认秘鲁亚马逊雨林中的手工和小规模采金业(ASGM)活动。我们根据支持矢量机(SVMs)测试了几个半监督的分类器,以探测马德雷德迪奥斯地区2019年至2021年水体的变化,这是亚马逊活动的全球热点之一。实验显示,基于SVM的模型能够为RGB(使用科恩的$@kappa$0.49)和6个频道图像(使用科恩的$$@kappa$0.71)取得合理的性能(使用科恩的$\kappa$ 0.71),其说明非常有限。还分析了将实验室色彩空间纳入变化检测的效果。