In this paper, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning to supply adaptive assistance during a robot assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient specific controller parameters or physical models. We propose the use of a virtual patient model to generalize AR3n across multiple subjects. The system modulates robotic assistance in realtime based on a subject's tracking error, while minimizing the amount of robotic assistance. The controller is experimentally validated through a set of simulations and human subject experiments. Finally, a comparative study with a traditional rule-based controller is conducted to analyze differences in assistance mechanisms of the two controllers.
翻译:在这篇论文中,我们提出了AR3n(发音为“Aaron”),一种辅助-按需(AAN)控制器,它利用强化学习在机器人协助手写康复任务中提供自适应辅助。与以前的AAN控制器不同,我们的方法不依赖于特定于患者的控制器参数或物理模型。我们提出使用虚拟患者模型来通用化AR3n跨多个受试者。该系统根据受试者的跟踪误差实时调节机器人辅助,同时最大程度地减少机器人辅助。控制器通过一系列模拟和人体实验进行了实验验证。最后,与传统基于规则的控制器进行了比较研究,以分析两个控制器辅助机制的差异。