In this paper we introduce sound and strongly complete axiomatizations for XPath with data constraints extended with hybrid operators. First, we present HXPath=, a multi-modal version of XPath with data, extended with nominals and the hybrid operator @. Then, we introduce an axiomatic system for HXPath=, and we prove it is strongly complete with respect to the class of abstract data models, i.e., data models in which data values are abstracted as equivalence relations. We prove a general completeness result similar to the one presented in, e.g., [BtC06], that ensures that certain extensions of the axiomatic system we introduce are also complete. The axiomatic systems that can be obtained in this way cover a large family of hybrid XPath languages over different classes of frames, for which we present concrete examples. In addition, we investigate axiomatizations over the class of tree models, structures widely used in practice. We show that a strongly complete, finitary, first-order axiomatization of hybrid XPath over trees does not exist, and we propose two alternatives to deal with this issue. We finally introduce filtrations to investigate the status of decidability of the satisfiability problem for these languages.
翻译:在本文中,我们为 XPath 引入了健全且非常完整的异同法化, 其数据限制与混合操作者相扩展。 首先, 我们展示了HXPath=, 这是一种带有数据的多式 XPath 版本, 其数据扩展与名义和混合操作者@ 。 然后, 我们引入了HXPath = 的异同系统, 并证明它对于抽象数据模型的类别来说非常完整, 即数据值被抽象作为等同关系的数据模型。 我们证明, 与混合 XPath (BtC06) 中介绍的类似, 其整体性结果与( 例如) [BtC06] 中介绍的类似, 以确保我们引入的xPath 系统的某些多式扩展也已完成。 以这种方式获得的xPath 系统覆盖了不同类型的混合 XPath 语言的大型组合, 我们为此举出了具体的例子。 此外, 我们调查了树类模式和实践中广泛使用的结构的氧化性结构的分类化。 我们证明, 强烈完整的、 将混合 XPathfis 的初始化第一阶定式化化 和永久化的可变化两种替代品 问题 与 Wepilvilevild 问题 提出, 。