In this work, we first resolve a question in the probabilistic verification of infinite-state systems (specifically, the probabilistic pushdown systems). We show that model checking stateless probabilistic pushdown systems (pBPA) against probabilistic computational tree logic (PCTL) is generally undecidable. We define the quantum analogues of the probabilistic pushdown systems and Markov chains and investigate whether it is necessary to define a quantum analogue of probabilistic computational tree logic to describe the branching-time properties of the quantum Markov chain. We also study its model-checking problem and show that the model-checking of stateless quantum pushdown systems (qBPA) against probabilistic computational tree logic (PCTL) is generally undecidable, too. The immediate corollaries of the above results are summarized in the work.
翻译:在这项工作中,我们首先解决了无穷状态系统的概率验证中的一个问题(具体来说,是概率推下系统)。我们展示了模型检查无状态概率下推系统(pBPA)对抗概率计算树逻辑(PCTL)通常是不可判定的。我们定义了概率推下系统和马尔科夫链的量子模拟,并研究了是否需要定义量子概率计算树逻辑来描述量子马尔科夫链的分支时间性质。我们还研究了它的模型检查问题,并显示模型检查无状态量子下推系统(qBPA)对抗概率计算树逻辑(PCTL)通常是不可判定的。上述结果的直接推论总结在本文中。