Quantification of uncertainty in deep-neural-networks (DNN) based image registration algorithms plays an important role in the safe deployment of real-world medical applications and research-oriented processing pipelines, and in improving generalization capabilities. Currently available approaches for uncertainty estimation, including the variational encoder-decoder architecture and the inference-time dropout approach, require specific network architectures and assume parametric distribution of the latent space which may result in sub-optimal characterization of the posterior distribution for the predicted deformation-fields. We introduce the NPBDREG, a fully non-parametric Bayesian framework for unsupervised DNN-based deformable image registration by combining an \texttt{Adam} optimizer with stochastic gradient Langevin dynamics (SGLD) to characterize the true posterior distribution through posterior sampling. The NPBDREG provides a principled non-parametric way to characterize the true posterior distribution, thus providing improved uncertainty estimates and confidence measures in a theoretically well-founded and computationally efficient way. We demonstrated the added-value of NPBDREG, compared to the baseline probabilistic \texttt{VoxelMorph} unsupervised model (PrVXM), on brain MRI images registration using $390$ image pairs from four publicly available databases: MGH10, CMUC12, ISBR18 and LPBA40. The NPBDREG shows a slight improvement in the registration accuracy compared to PrVXM (Dice score of $0.73$ vs. $0.68$, $p \ll 0.01$), a better generalization capability for data corrupted by a mixed structure noise (e.g Dice score of $0.729$ vs. $0.686$ for $\alpha=0.2$) and last but foremost, a significantly better correlation of the predicted uncertainty with out-of-distribution data ($r>0.95$ vs. $r<0.5$).
翻译:深度神经网络(DNN)基于图像注册算法的不确定性定量化在安全部署真实世界医疗应用程序和面向研究的加工管道以及提高一般化能力方面发挥着重要作用。目前可用的不确定性估算方法,包括变异编码脱coder架构和推断时间退出法,需要特定的网络架构,并承担潜伏空间的参数分布,这可能导致对预测的变形场的后端分配进行低于最佳的D-50美元。我们引入了NPBDREG,这是完全非参数的Bayesian框架,用于未超超的DNNNS基础的变形图像登记。我们用一个textt{Adam}优化与随机梯度梯度兰度动态(SGLD)相结合,以通过海边取样确定真实的海边分布。NPBDREGE为真正的海面分布提供了一条有原则的、无偏差的非参数的方法,从而提供了更好的不确定性估测算和信心措施,而从理论上和计算得力得多。