Like fingerprints, cortical folding patterns are unique to each brain even though they follow a general species-specific organization. Some folding patterns have been linked with neurodevelopmental disorders. However, due to the high inter-individual variability, the identification of rare folding patterns that could become biomarkers remains a very complex task. This paper proposes a novel unsupervised deep learning approach to identify rare folding patterns and assess the degree of deviations that can be detected. To this end, we preprocess the brain MR images to focus the learning on the folding morphology and train a beta-VAE to model the inter-individual variability of the folding. We compare the detection power of the latent space and of the reconstruction errors, using synthetic benchmarks and one actual rare configuration related to the central sulcus. Finally, we assess the generalization of our method on a developmental anomaly located in another region. Our results suggest that this method enables encoding relevant folding characteristics that can be enlightened and better interpreted based on the generative power of the beta-VAE. The latent space and the reconstruction errors bring complementary information and enable the identification of rare patterns of different nature. This method generalizes well to a different region on another dataset. Code is available at https://github.com/neurospin-projects/2022_lguillon_rare_folding_detection.
翻译:与指纹一样, 圆形折叠模式是每个大脑所独有的, 即使它们遵循的是一般的物种特定组织。 一些折叠模式与神经发育紊乱相关。 但是, 由于个人之间的差异性很大, 识别可能成为生物标志的稀有折叠模式仍然是一项非常复杂的任务。 本文提出一种创新的、 不受监督的深层次学习方法, 以识别稀有折叠模式, 并评估可以检测到的偏差程度。 为此, 我们预处理大脑MR图像, 以学习的焦点为折叠形态, 并训练一个 β- VAE 来模拟折叠的个体间变异性。 我们用合成基准和与中央螺旋相关的一种实际稀有配置来比较潜在空间和重建错误的探测力。 最后, 我们评估我们的方法在位于另一个区域的发展异常上的总体性。 我们的结果表明, 这种方法可以根据乙型- VAEE的基因变异性能力, 将相关的折叠特性进行调。 潜在空间和重建错误带来补充信息, 并且能够识别不同性质的稀有模式 。 这个方法用于 ASlusblusbalalalalalbalusal roudalalalalal anal anal anal anal drobismus anal anal anal analismusildal