Hemodynamic velocity fields in coronary arteries could be the basis of valuable biomarkers for diagnosis, prognosis and treatment planning in cardiovascular disease. Velocity fields are typically obtained from patient-specific 3D artery models via computational fluid dynamics (CFD). However, CFD simulation requires meticulous setup by experts and is time-intensive, which hinders large-scale acceptance in clinical practice. To address this, we propose graph neural networks (GNN) as an efficient black-box surrogate method to estimate 3D velocity fields mapped to the vertices of tetrahedral meshes of the artery lumen. We train these GNNs on synthetic artery models and CFD-based ground truth velocity fields. Once the GNN is trained, velocity estimates in a new and unseen artery can be obtained with 36-fold speed-up compared to CFD. We demonstrate how to construct an SE(3)-equivariant GNN that is independent of the spatial orientation of the input mesh and show how this reduces the necessary amount of training data compared to a baseline neural network.


翻译:冠状动脉中的热动速场可以成为心血管疾病诊断、预测和治疗规划的宝贵生物标志的基础。加速场通常是通过计算流体动态(CFD)从病人专用的三维动脉模型中获得的。然而,CFD模拟需要专家精心设计,而且时间密集,妨碍了临床实践的大规模接受。为了解决这个问题,我们提议将图形神经网络(GNN)作为一种有效的黑箱替代方法,用于估计绘制到动脉润滑剂四肢间螺旋顶部的3D速度场。我们对这些GNNS进行合成动脉模型和基于CFD的地面事实速度场的培训。一旦GNN接受了培训,就可以以36倍的速度在新的和看不见动脉中进行速度估计,而CFD是36倍的速度。我们证明如何建立一个独立于输入网的空间方向的SE(3)-Qinvariant GNNN,并表明这如何减少与基线神经网络相比培训数据的必要数量。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员