The problem of $d$-Path Vertex Cover, $d$-PVC lies in determining a subset $F$ of vertices of a given graph $G=(V,E)$ such that $G \setminus F$ does not contain a path on $d$ vertices. The paths we aim to cover need not to be induced. It is known that the $d$-PVC problem is NP-complete for any $d \ge 2$. When parameterized by the size of the solution $k$, 5-PVC has direct trivial algorithm with $\mathcal{O}(5^kn^{\mathcal{O}(1)})$ running time and, since $d$-PVC is a special case of $d$-Hitting Set, an algorithm running in $\mathcal{O}(4.0755^kn^{\mathcal{O}(1)})$ time is known. In this paper we present an iterative compression algorithm that solves the 5-PVC problem in $\mathcal{O}(4^kn^{\mathcal{O}(1)})$ time.
翻译:$d$- Path Vertex 封面, $d$- PVC 的问题在于确定一个特定图形 G=( V, E) 的子子子顶端的F$( F), 使$G\ setminus F$不包含$d$ vertices 路径。 我们想要覆盖的路径不需要诱导。 众所周知, $d$- PVC 问题对于任何 $d\ ge 2 美元来说都是 NP- PVC 问题。 如果按照解决方案的大小来参数, 美元, 5- PVC 直接使用$\ mathcal{ O} ( 5}kn\ mathcal{ O}} 美元运行时间直接的微小算法, 因为$d$- PVC 是 $d$- Hitting Set的特例, 以$mathcal{O} (4. 755} kn math cal{ O} (1)} 时间为已知。 在本文中, 我们展示了一种反复压缩算算算法, 5- PVC 问题在$\ mathal{macal{ O} ( } ( { O} ( } ( ) *} ( {@@@@@@@@@@@m) axxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)