Prediction over tabular data is an essential and fundamental problem in many important downstream tasks. However, existing methods either take a data instance of the table independently as input or do not fully utilize the multi-rows features and labels to directly change and enhance the target data representations. In this paper, we propose to 1) construct a hypergraph from relevant data instance retrieval to model the cross-row and cross-column patterns of those instances, and 2) perform message Propagation to Enhance the target data instance representation for Tabular prediction tasks. Specifically, our specially-designed message propagation step benefits from 1) fusion of label and features during propagation, and 2) locality-aware high-order feature interactions. Experiments on two important tabular data prediction tasks validate the superiority of the proposed PET model against other baselines. Additionally, we demonstrate the effectiveness of the model components and the feature enhancement ability of PET via various ablation studies and visualizations. The code is included in https://github.com/KounianhuaDu/PET.
翻译:对表格数据进行预测是许多重要下游任务的基本和根本问题,但是,现有方法要么独立地将表格中的数据实例作为输入,要么不充分利用多行特征和标签直接改变和加强目标数据表示方式;在本文件中,我们提议(1)从相关数据实例检索中建立高光谱,以模拟这些实例的交叉和交叉列模式;(2)进行信息传播,以加强塔布尔预测任务的目标数据实例表示方式。具体而言,我们特别设计的信息传播步骤的好处是:(1) 传播期间标签和特征的融合;(2) 地貌觉高分级特征互动;对两个重要的表格数据预测任务进行的实验验证了拟议的PET模型相对于其他基线的优越性;此外,我们还通过各种通货膨胀研究和直观化,展示了模型组成部分的有效性和PET的特性增强能力。该代码包含在https://github.com/KonianhuaDu/PET中。